Gromov-Hausdorff stability for group actions

نویسندگان

چکیده

We will extend the topological Gromov-Hausdorff stability [ 2 ] from homeomorphisms to finitely generated actions. prove that if an action is expansive and has shadowing property, then it topologically GH-stable. From this we derive examples of GH-stable actions discrete Heisenberg group on tori. Finally, GH-stability invariant under isometric conjugacy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gromov-Hausdorff stability of linkage-based hierarchical clustering methods

A hierarchical clustering method is stable if small perturbations on the data set produce small perturbations in the result. This perturbations are measured using the Gromov-Hausdorff metric. We study the problem of stability on linkage-based hierarchical clustering methods. We obtain that, under some basic conditions, standard linkage-based methods are semi-stable. This means that they are sta...

متن کامل

Quantized Gromov-hausdorff Distance

A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel’s Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As appli...

متن کامل

Gromov–hausdorff Distance for Quantum Metric Spaces

By a quantum metric space we mean a C∗-algebra (or more generally an order-unit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov–Hausdorff distance. We show that the basic theorems of the classical theory have natural quantum analogues. Our main example ...

متن کامل

Matricial Quantum Gromov-hausdorff Distance

We develop a matricial version of Rieffel’s Gromov-Hausdorff distance for compact quantum metric spaces within the setting of operator systems and unital C∗-algebras. Our approach yields a metric space of “isometric” unital complete order isomorphism classes of metrized operator systems which in many cases exhibits the same convergence properties as those in the quantum metric setting, as for e...

متن کامل

Non-Archimedean Gromov-Hausdorff distance

In this paper, we study the geometry of non-Archimedean Gromov-Hausdorff metric. This is the first part of our series work, which we try to establish some facts about the counterpart of Gromov-Hausdorff metric in the non-Archimedean spaces. One of the motivation of this work is to find some implied relations between this geometry and number theory via p-adic analysis, so that we can use the for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2020320